

BaBar Magnet Forces during Quench

Holger Witte Brookhaven National Laboratory Energy Frontier Accelerator Group

Forces During Quench

Simplified geometry from Brett Parker (not verified)

Forces evaluated using Maxwell Stress tensor

Current Decay

BABAR run13

Assume dl/dt=const.= 90A/s (current decays in 50s)

Provided PDF: Quench Protection Review 1996

Material Properties Iron

Field At Center Magnet

Identifiers

Forces are for 1/8th of the entire geometry (symmetry **not** considered)

Eddy Currents

Very small (<1A/mm²)

Time=30 s Volume: Current density norm (A/m²) Arrow Surface: Current density

Front

Side

 F_z , F_y : Internal forces

Top

 F_x , F_z : Internal forces

Assume Insulation Between Iron

2mm gap Implemented as boundary condition

Front

Side

Top

